ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate Updates
نویسندگان
چکیده
Finding a fixed point to a nonexpansive operator, i.e., x∗ = Tx∗, abstracts many problems in numerical linear algebra, optimization, and other areas of scientific computing. To solve fixed-point problems, we propose ARock, an algorithmic framework in which multiple agents (machines, processors, or cores) update x in an asynchronous parallel fashion. Asynchrony is crucial to parallel computing since it reduces synchronization wait, relaxes communication bottleneck, and thus speeds up computing significantly. At each step of ARock, an agent updates a randomly selected coordinate xi based on possibly out-of-date information on x. The agents share x through either global memory or communication. If writing xi is atomic, the agents can read and write x without memory locks. Theoretically, we show that if the nonexpansive operator T has a fixed point, then with probability one, ARock generates a sequence that converges to a fixed points of T . Our conditions on T and step sizes are weaker than comparable work. Linear convergence is also obtained. We propose special cases of ARock for linear systems, convex optimization, machine learning, as well as distributed and decentralized consensus problems. Numerical experiments of solving sparse logistic regression problems are presented.
منابع مشابه
ARock: an Algorithmic Framework for Async-Parallel Coordinate Updates
The problem of finding a fixed point to a nonexpansive operator is an abstraction of many models in numerical linear algebra, optimization, and other areas of scientific computing. To solve this problem, we propose ARock, an asynchronous parallel algorithmic framework, in which a set of agents (machines, processors, or cores) update randomly selected coordinates of the unknown variable in an as...
متن کاملOn Unbounded Delays in Asynchronous Parallel Fixed-Point Algorithms
The need for scalable numerical solutions has motivated the development of asynchronous parallel algorithms, where a set of nodes run in parallel with little or no synchronization, thus computing with delayed information. This paper studies the convergence of the asynchronous parallel algorithm ARock under potentially unbounded delays. ARock is a general asynchronous algorithm that has many app...
متن کاملHybrid-DCA: A Double Asynchronous Approach for Stochastic Dual Coordinate Ascent
In prior works, stochastic dual coordinate ascent (SDCA) has been parallelized in a multi-core environment where the cores communicate through shared memory, or in a multi-processor distributed memory environment where the processors communicate through message passing. In this paper, we propose a hybrid SDCA framework for multi-core clusters, the most common high performance computing environm...
متن کاملParallel Genetic Algorithm Using Algorithmic Skeleton
Algorithmic skeleton has received attention as an efficient method of parallel programming in recent years. Using the method, the programmer can implement parallel programs easily. In this study, a set of efficient algorithmic skeletons is introduced for use in implementing parallel genetic algorithm (PGA).A performance modelis derived for each skeleton that makes the comparison of skeletons po...
متن کاملAsynchronous Coordinate Descent under More Realistic Assumptions
Asynchronous-parallel algorithms have the potential to vastly speed up algorithms by eliminating costly synchronization. However, our understanding of these algorithms is limited because the current convergence of asynchronous (block) coordinate descent algorithms are based on somewhat unrealistic assumptions. In particular, the age of the shared optimization variables being used to update a bl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016